

Climate Change Vulnerability Study and Resilience Plan

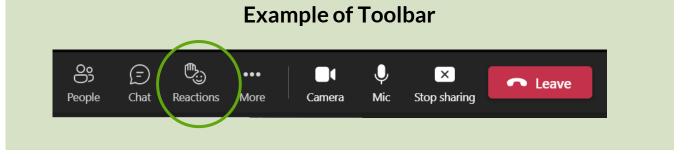
Working Group Meeting 2

April 17th 2023

Climate Data & Asset Exposure Analysis

Sensitivity, Consequence & Potential Impact

Priority Vulnerabilities


Discussion

Next Steps

Welcome & Introductions

- Please use the *raise hand function* at any point during the presentation to ask a question or add it to the chat.
- The meeting will be recorded
- The presentation was provided to everyone in advance of today's working group session.
- If you have technical difficulties or need assistance with the Microsoft Teams please message jeffrey.meek@icf.com

Team

- **Project Lead:** Dave Bradt, Senior Director Strategic Planning
- **Technical Lead:** Ed Roedel, Principal Engineer Strategic Planning
- **Stakeholder Engagement:** Dave Gridley, Director Government & Community Relations
- **Regulatory Lead:** Lori Cole, Manager Regulatory & Tariffs
- **Study Support:** ICF Consulting
 - o Judsen Bruzgul Project Lead
 - o Dan Bishop, PhD Climate Scientist
 - o Jeffrey Meek Stakeholder Lead

Registered Working Group Participants

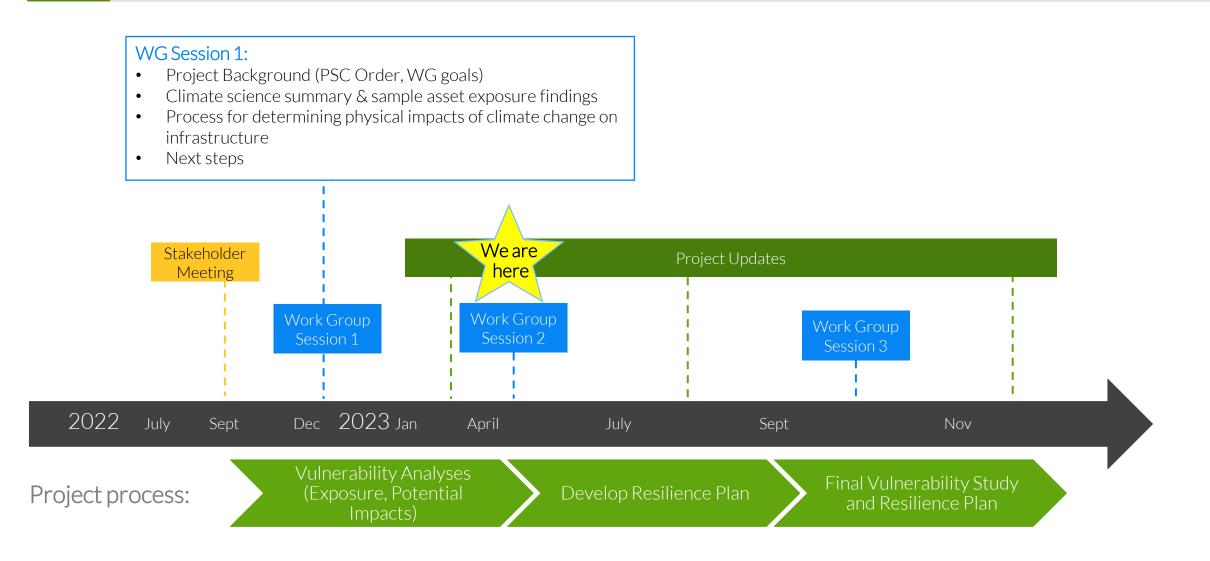
Name	Organization or Affiliation
Avni Pravin	AGREE
Ziang Zhang	Binghamton Unviersity
Erika Pierce	Board of Legislators
Aimee Dailey	Broome County Planning
Beth Lucas	Broome County Planning
Owlen Huxley	C&S Companies
Brian Eden	Campaign for Renewable Energy
Barry Carr	Clean Communities of CNY
Abigail McHugh-Grifa	Climate Solutions Accelerator of the Genesee-Finger Lakes Region
Kristen Van Hooreweghe	Climate Solutions Accelerator of the Genesee-Finger Lakes Region
Molly Ryan	Clinton County IDA
Kelly Donoghue	Clinton County Office of Emergency Services
Patrice Perry	Columbia County Planning Department
Guillermo Metz	Cornell Cooperative Extension Tompkins County
Karim Beers	Cornell Cooperative Extension Tompkins County
Robert Corpora	Cortland County
Michael Mager	Couch White, LLP for Multiple Intervenors
Rick Mancini	Customized Energy Solutions
Bonnie Lawrence	Erie County Department of Environment and Planning
Romy M Fain, PhD	Heat Inverse
Michael Jagielski	Koffman Southern Tier Incubator
Andrew Brodell	Livingston County OEM
Will Gall	Livingston County OEM
Amanda Kaier	Mohawk Valley Economic Development District, Inc
Clement Chung	Monroe County Department of Environmental Services
Aferdita Bardhi	NYS Department of Public Service
Biola Daniel	NYS Department of Public Service
Bridget Frymire	NYS Department of Public Service
Eric Moore	NYS Department of Public Service
Greg Crawford	NYS Department of Public Service
Michael Richard	NYS Department of Public Service

Name	Organization or Affiliation
Moutasim Hamayel	NYS Department of Public Service
Nicole Sallese	NYS Department of Public Service
Bob Mack	NYSERDA
Carol Chock	Rayepayer and Community Intervenors
Judy McKinney Cherry	Schuyler County Partnership
Kerri Green	Schuyler County Partnership for Economic Development
Jeffrey Eisenhauer	Siemens
Jack Wheeler	Steuben County
Heather Brown	Sullivan County
Jennifer de Souza	The Raymond Corporation
Mike Straight	Tier Energy Network
Jeff Smith	Tier Energy Network, Rotary
Hailley Delisle	Tompkins County
Peter Bardaglio	Tompkins County Climate Protection Initiative
Katie Borgella	Tompkins County Dept of Planning and Sustainability
Fion MacCrea	Town of Alfred
Jason Keding	Town of Boston
Dr. Mitch Tucker	Town of Boston
Brendan Ryan	Town of Brighton
Evert Garcia	Town of Brighton
C.J. Randall	Town of Ithaca
Nick Goldsmith	Town of Ithaca
Katherine Daniels	Town of North Salem
Norma J Burris	Town of Orange
Josheph Wilson	Village of Dryden
James Basile	Village of Fair Haven
Dave McDowell	Village of Sodus Point
Thomas Lyon	Wayne County Economic Development & Planning
Ryan Dwyer	Westchester County
Brian Meyers	Wyoming County

Welcome & Introductions **Project Update** Climate Data & Asset Exposure Analysis Sensitivity, Consequence & Potential Impact **Priority Vulnerabilities** Discussion Next Steps

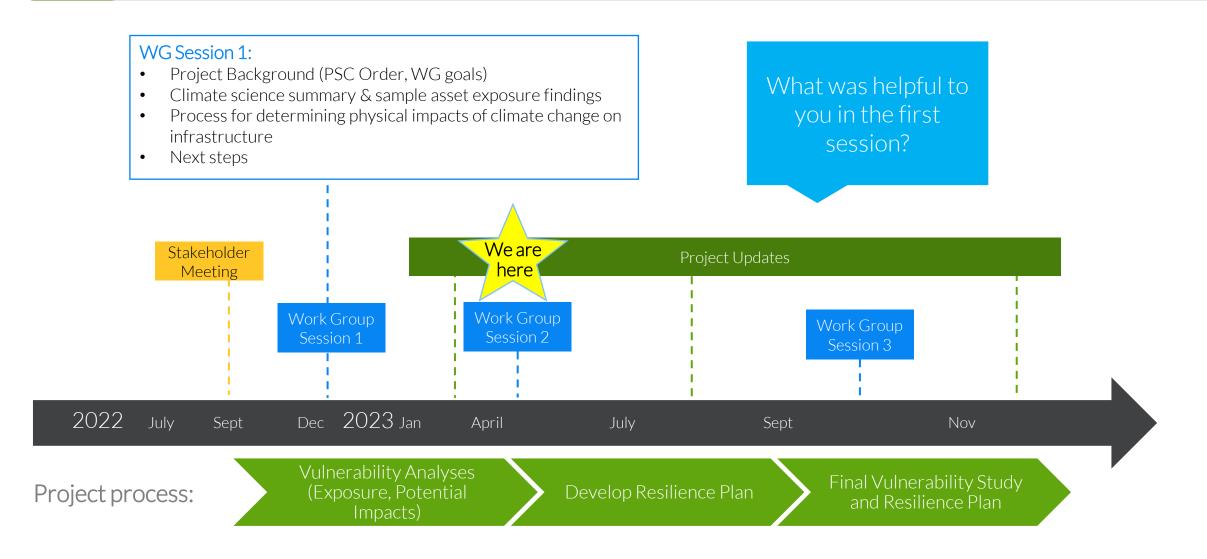
Overview of PSC Order

- March 2022, PSC law became effective (Case 22-E-0222) to NY electric utilities
- Conduct a Climate Change Vulnerability Study (Study) and develop a Climate Change Resilience Plan (Plan)
- The Study must include an evaluation of the electric grid's vulnerability to climate-driven risks
- The Plan must address the findings of the Study for the next ten- and twenty-year periods
- Engage and collaborate with stakeholders
- The Study and Plan must be filed in the fall of 2023, with updates at least every five years



Reminder: Working Group Overview

- Provide a platform for open and constructive discussion of key issues affecting NYSEG and RG&E's climate resilience planning
 - o Gather input and insights from external stakeholders and subject matter experts on strengths and gaps
 - o Learn about parallel efforts and connection points
- This is the second Working Group meeting, with the third meeting to be scheduled in early fall of 2023


Reminder: Efforts to Date

Reminder: Efforts to Date

Today's Focus

change on electric utility infrastructure

- Summarize the priority vulnerability findings and how they will drive the focus of the Resilience Plan
- Discuss study details and process, and share next steps

• Update on the study progress since the last WG meeting

- Provide information on the climate science, assets, and exposure for the Climate Change Vulnerability Study and Resilience Plan
- Review study process for determining **sensitivity**, consequence, and potential impact of climate

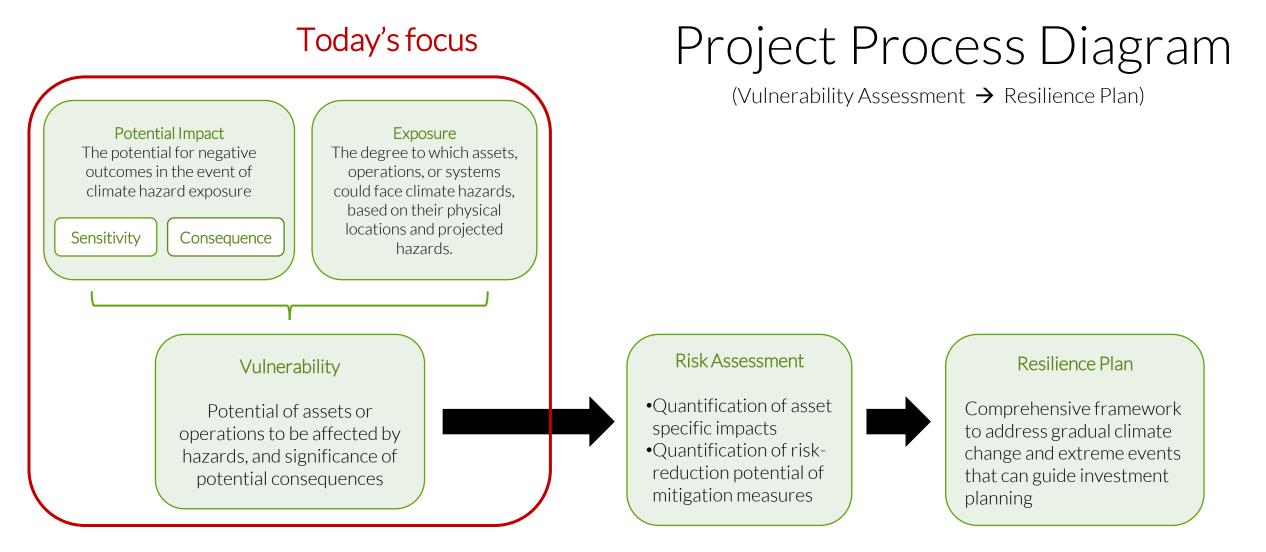
Actions to increase resilience to climate change (e.g., hardening, undergrounding, new storm barriers, changes to design standards, etc.)

Adaptation

Welcome & Introductions

Project Update

Climate Data & Asset Exposure Analysis


Sensitivity, Consequence & Potential Impact

Priority Vulnerabilities

Discussion

Next Steps

Process Diagram: Vulnerability Assessment Overview

Potential impact scores are assessed alongside **exposure** (climate data for AVANGRID service territory) to identify **vulnerabilities.**

Potential Impact

Sensitivity

Sensitivity is the degree to which assets could be negatively affected by climate hazard exposures

Examples:

- Overheads transformers **are not** sensitive to flooding
- Pad mount transformers are sensitive to flooding

Consequence

Consequence is the potential for impacts to sensitive assets to result in negative outcomes for Avangrid's system, customers, or staff

Examples:

- Overhead transformer failure impacts 5-15 customers
- Substation transformer failure impacts 1,000+ customers

Exposure

Exposure is the overlap between probabilistic climate hazards and equipment locations

Vulnerabilities

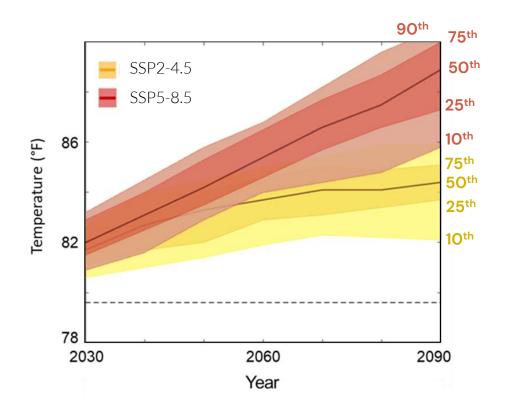
Vulnerabilities serve as a starting point to identify and prioritize adaptation investments that will be further explored in the resilience plan.

Priority Vulnerabilities

Priority vulnerabilities are asset types with the highest potential impact from each hazard, in the most exposed regions. These variables will drive the **resilience plan** focus.

High-Level

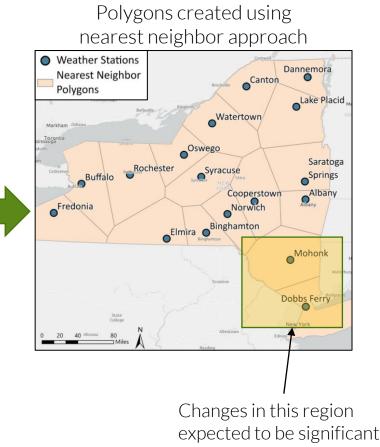
- Climate change will lead a warmer and wetter future
- Extreme events are expected to occur more frequently and of a greater intensity, but determining quantifiable changes to justify projects is difficult/uncertain


Specific

- By 2050, more than half of NYSEG and 100% of RG&E facilities are projected to go from 0 to more than 2 days per year with average temperatures over 86°F **[Affects transformers and ratings]**
- By 2050, 100% of NYSEG and RG&E facilities are projected to see 1-in-10-year temperatures ranging from 100°F to 105°F compared to just 22% currently **[Affects most temperature sensitive equipment; 104°F max]**
- By 2050, NYSEG and RG&E territories are projected to see increases of 9%-12% in the maximum 5-day precipitation event. [Not expected to be limiting]
- Average wind speeds are not expected to increase significantly. Windspeeds of ~70+ mph have <u>already been</u> measured across the territories
- There are already significant numbers of assets in flood zones for present-day 100- and 500-year events; by 2050, 100- and 500-year flood events are projected to cause deeper and more extensive flooding

Climate Pathways

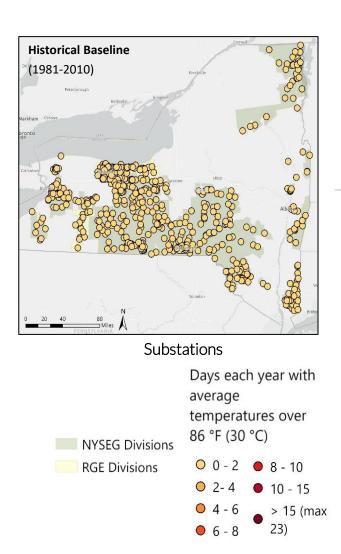
- Climate change projections: a range of possible outcomes in terms of future temperatures, rainfall, or sea level rise
- Vulnerability assessment scenarios: a subset of climate projections that consider potential climate futures to characterize future climate risks
- Each scenario consists of:
 - 1. Shared Socioeconomic Pathway (SSP)
 - 2. Representative Concentration Pathway (RCP)
 - SSP2-RCP4.5: trends do not shift from historical patterns
 - SSP5-RCP8.5: rapidly growing global economy heavily dependent on fossil fuels
 - 3. Percentile from the range of model outcomes for a given emissions trajectory (e.g., 25th, 50th, 90th percentiles)
- We used three pathways representing the plausible lower and upper bounds of climate model projections:
 - SSP2-4.5 50th percentile as lower bound
 - SSP5-8.5 50th percentile as high bound
 - SSP5-8.5 90th percentile as a high-end "stress test"

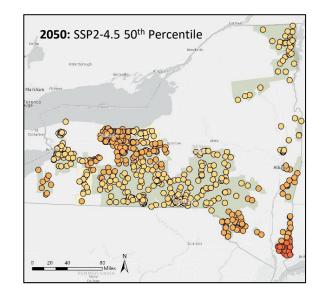

NYSEG/RG&E's Selected Planning Level

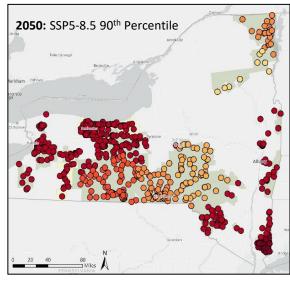
Exposure Methods

- Exposure: degree to which assets could face climate hazards, based on their physical locations and projected hazards
- Climate data is from Columbia weather stations
- Nearest neighbor approach created polygons for each weather station in the NYSERDA climate region
- Assets were assigned climate data of the polygon they're located in

Quantifiable Climate Variables Assessed				
Annual Average Maximum Temperature	1-in-10-year Maximum Temperature			
Days Per Year with Daily Avg. Temperatures > 86°F (30°C)	Days Per Year with Max. Temperatures > 95°F (35°C)			
Days Per Year with Average Max. Temperatures > 104°F (40°C)	Avg. Annual Max. 5-day Precipitation			
Highest Daily Peak Wind Gusts	First Street Flooding Data (100-year / 500-year)			

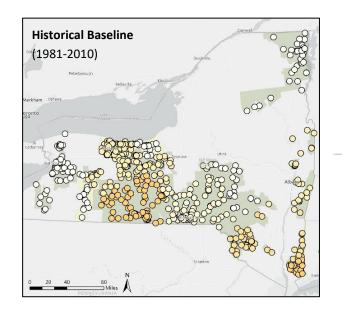



Exposure: Temperature Findings

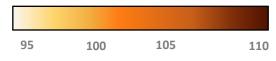

Key Takeaway:

All assets are projected to see more frequent days with average temperatures >86°F

- Historically, assets have seen < 2 days each year with average temperatures above 86°F
- Increases projected to be highest in the southeastern region, at assets near the Mohonk and Dobbs Ferry weather stations
- Assets near the Rochester, Oswego, Buffalo, and Fredonia weather stations are also projected to see higher increases, relative to the rest of the service area, under both future scenarios

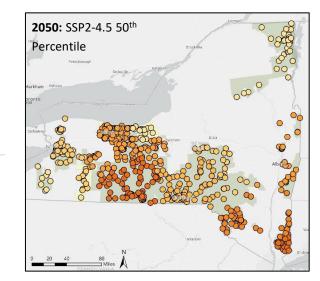


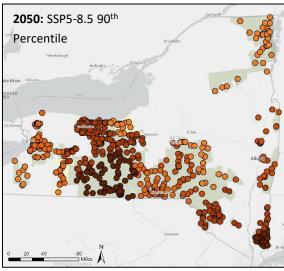
Exposure: Temperature Findings


Key Takeaway:

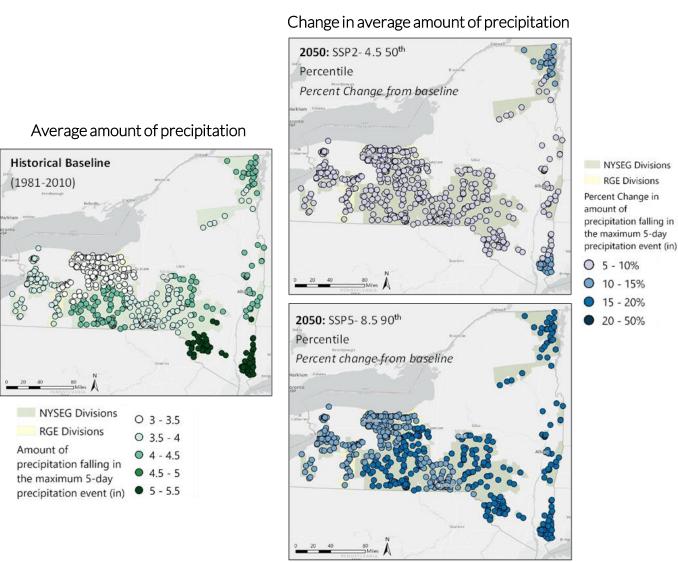
Assets across the service area are projected to experience higher extreme temperatures in coming decades

- Historically, RG&E and NYSEG assets have experienced 1-in-10-year temperatures ranging from 94 - 100°F
- Assets closest to the Elmira, Dobbs Ferry, and Mohonk weather stations are projected to experience the greatest increases in extreme temperatures
 - SSP2-4.5 50th percentile projections: 103-107°F, at these stations in 2050
 - SSP5-8.5 90th percentile projections: 108-112°F, at these stations in 2050




1-in-10 Hottest Temperature (° F)

NYSEG Divisions



Exposure: Precipitation Findings

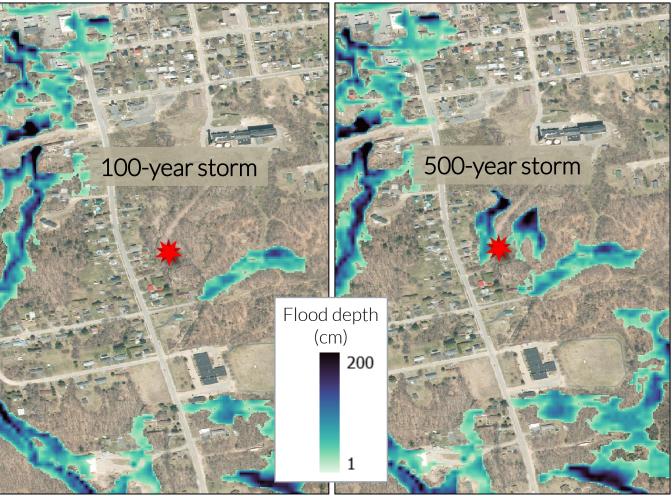
<u>Key Takeaway:</u>

Maximum 5-day precipitation totals are projected to increase across the service area

- Historically, assets around the Mohonk, Dobbs Ferry, and Saratoga weather stations have experienced the most precipitation falling during the maximum 5-day event
- Highest totals are projected to continue to occur at these Mohonk, Dobbs Ferry, and Saratoga weather stations

20

Exposure: Flooding Findings


Key Takeaways

There are already significant numbers of assets in flood inundation zones for present-day 100- and 500-year events; by 2050, 100- and 500-year flood events are projected to cause deeper and more extensive flooding.

Flooding was evaluated on an asset-by-asset basis, instead of a regional basis

- Currently, approximately **16%** of substations are inundated by at least ~0.5 in. of water under the 100-year storm, and **22%** are inundated under the 500-year storm
- By 2050, on average, substations are projected to see a ~2.5 in. increase in flood depth under the 100-year storm scenario, and an ~3 in. increase under the 500-year storm scenario

Example asset & flood data (Dannemora Distribution Station)

Exposure: Wind Findings

Quantifying the effect of climate change potential for high-winds that are the result of unique weather events is difficult to do with a high degree of confidence. Our analysis relies on:

Extreme Wind Analysis

Quantifiable

(Quantitatively Modeled Simulations)

- Average near-surface wind-speeds
- Reproduction of events experienced at regional airports via "gust-factor"
- Utilizes 16 Global Climate Models as part of NASA simulation efforts
- Does not include most extreme windspeeds, e.g., tropical cyclones

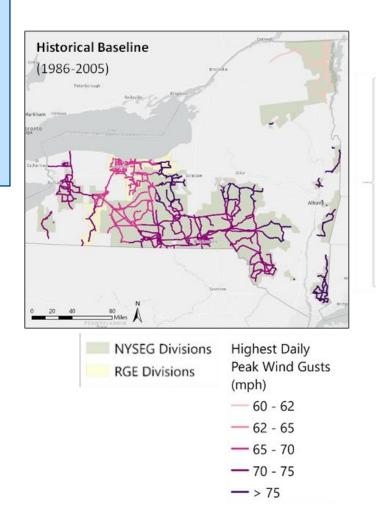
Limited "prediction" capability of maximum possible future wind-speeds

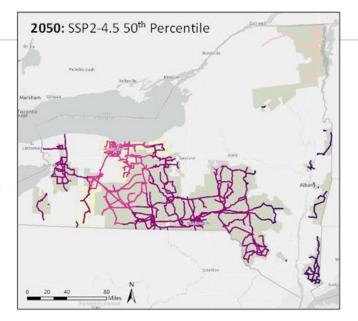
Qualified

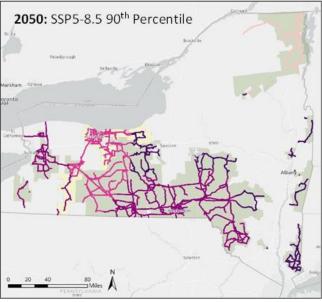
(High Uncertainty/Dynamic Events)

- Tropical/Extra-Tropical Cyclone
 - Intensity
 - Trajectory/Path
 - Frequency
- Uses literature review of studies specific to the analyzed phenomenon

Limited to analysis from literature; cannot determine specific probabilities of storm occurrence/intensity; hard to ask "what-if" questions quantitatively

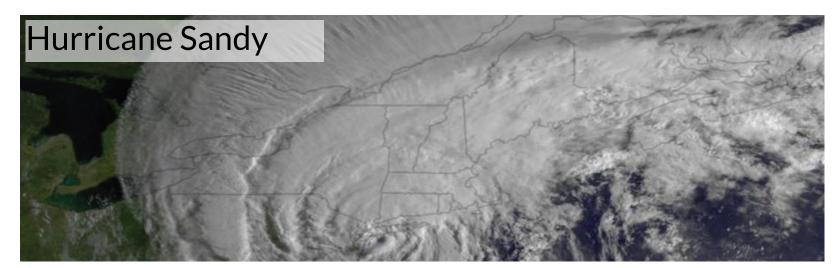

Exposure: Wind Findings




Key Takeaways:

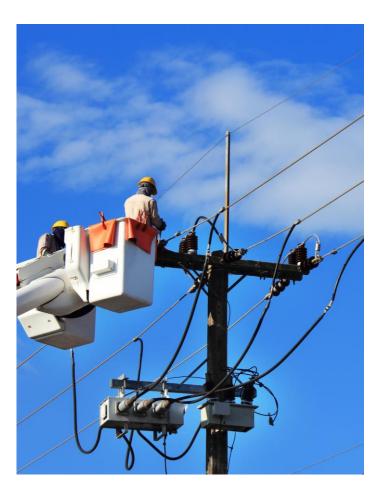
Wind projections do not indicate large increases in <u>average</u> wind gust speeds in future decades; however, high impact, low likelihood storm events *are* projected to intensify, which may drive higher <u>extreme</u> wind speeds

- Wind gust speeds in 2050 are projected to be between **3% lower and 1% higher than historical speeds**
- Wind gusts are highest at assets around Syracuse and Albany and lowest in Plattsburgh
- Even so, future tropical/extra tropical cyclone events and other low likelihood events are projected to intensify in the future; these high intensity low likelihood events may drive higher extreme wind speeds



High Impact Low Likelihood (HILL) Extreme Event Scenarios

- Opportunity to explore "stress test" extreme weather and climate events—including consecutive or compounding events—that are not well resolved by standard downscaled climate models but drive potentially outsized impacts.
- Unlocks an expanded set and potential "worst-case" vulnerabilities to consider in the Vulnerability Assessment, including impacts to the system that may already be operating in a degraded state and complex restoration scenarios.
- NYSEG & RG&E are evaluating:
 - 1. Hurricane with tropical storm force winds and inland flooding
 - 2. Ice storm followed by cold snap



Check-in: Climate Data & Asset Exposure Analysis

Key takeaways from the climate data & exposure analysis?

Any questions?

Welcome & Introductions

Project Update

Se

Climate Data & Asset Exposure Analysis

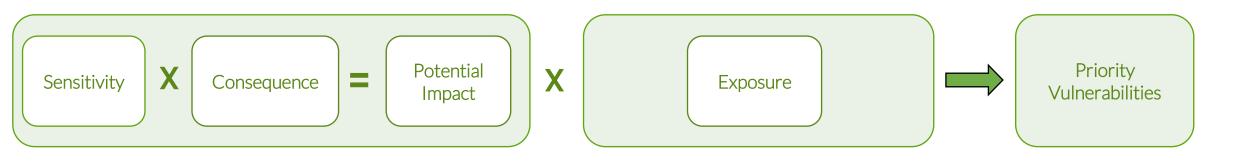
Sensitivity, Consequence & Potential Impact

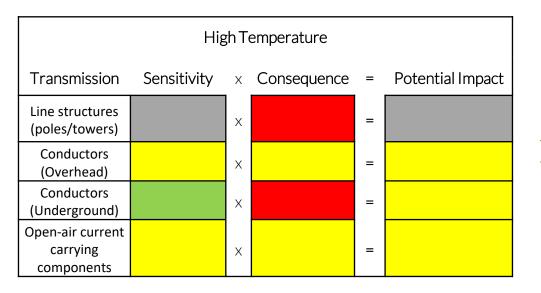
Priority Vulnerabilities

Discussion

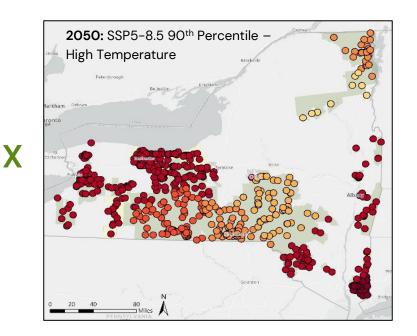
Next Steps

Sensitivity: the degree to which assets could be negatively affected by exposure to a climate hazard


Each asset in scope was given a sensitivity rating for each hazard, from O (None) to 3 (high)


These ratings were determined using ICF in-house expertise in consultation with Avangrid Project Leads

	Sensitivity				
None	Not sensitive to this hazard				
Low	• Asset, operation, or system faces minimal potential adverse impact from this hazard.				
Moderate	 Asset, operation, or system may be adversely affected by this hazard. Impacts are medium by one or more factors: Impacts are only likely at a very high threshold of exposure (i.e., very high temperature, or water level. Impacts are more likely to be chronic/controlled than sudden/acute (i.e., accelerated degradation rather than catastrophic failure). 				
High	 Asset, operation, or system may be subject to increased risk of major and/or sudden failure in the event of hazard exposure. Asset has limited existing tolerance for exposure to this hazard (i.e., substation without existing flood protection; non-submersible padmount transformer 				



Example

Potential impact scores are assessed alongside **exposure** (climate data for AVANGRID service territory) to identify **priority vulnerabilities.**

These priority vulnerabilities serve as a starting point to identify and prioritize adaptation investments that will be further explored in the resilience plan.

Sensitivity: Findings

	_		
None	Low	Medium	High

Transmission	Temperature	Wind	Inland & Riverine Flooding	Precipitation	Wind + Ice
Line structures (poles/towers)					
Conductors (Overhead)					
Conductors (Underground)					
Open-air current carrying components (i.e., switches, jumpers)					

Distribution	Temperature	Wind	Inland & Riverine Flooding	Precipitation	Wind + Ice
Structures (overhead) [includes poles]					
Conductors (underground)					
Conductors (overhead)					
Transformers (overhead)					
Transformers (pad mount)					
Regulators (pole mount)					
Capacitors (pole mount)					
Open-air current carrying components (i.e., switches, jumpers)					
Surge Arresters					

Substations	Temperature	Wind	Inland & Riverine Flooding	Precipitation	Wind + Ice
Substation transformers					
Substation regulators					
Circuit breakers (open air)					
Protection and control devices					
Instrument Transformers (CT's and PT's)					
Control room/ Control house					
Substation Reactor					
Support Structures					

Sensitivity is the degree to which assets could be negatively affected by climate hazard exposures.

30

Transmission	Consequences
Line structures (poles/towers)	
Conductors (Overhead)	
Conductors (Underground)	
Open-air current carrying components (i.e., switches, jumpers)	

None

Distribution	
Structures (overhead) [includes poles]	
Conductors (underground)	
Conductors (overhead)	
Transformers (overhead)	
Transformers (pad mount)	
Regulators (pole mount)	
Capacitors (pole mount)	
Open-air current carrying components (i.e., switches, jumpers)	
Surge Arresters	

Substations	
Substation transformers	
Substation regulators	
Circuit breakers	
Protection and control devices	
Instrument Transformers (CT's and PT's)	
Control room/ Control house	
Substation Reactor	
Support Structures	

Consequence is the estimated magnitude of negative outcomes associated with impacts.

Medium

Low

High

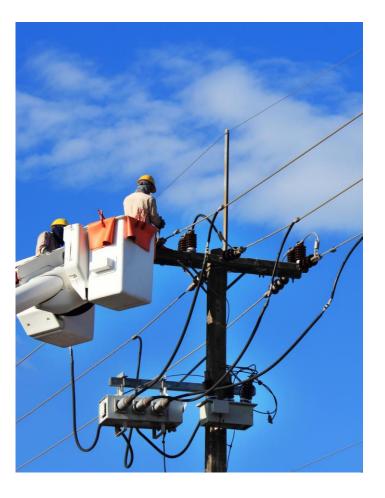
Potential Impact Ratings (sensitivity x consequence)

None Low Medium High

31

Transmission	Temperature	Wind	Inland & Riverine Flooding	Precipitation	Wind + Ice
Line structures (poles/towers)					
Conductors (Overhead)					
Conductors (Underground)					
Open-air current carrying components (i.e., switches, jumpers)					

Distribution	Temperature	Wind	Inland & Riverine Flooding	Precipitation	Wind + Ice
Structures (overhead) [includes poles]					
Conductors (underground)					
Conductors (overhead)					
Transformers (overhead)					
Transformers (pad mount)					
Regulators (pole mount)					
Capacitors (pole mount)					
Open-air current carrying components (i.e., switches, jumpers)					
Surge Arresters					


Substations	Temperature	Wind	Inland & Riverine Flooding	Precipitation	Wind + Ice
Substation transformers					
Substation regulators					
Circuit breakers					
Protection and control devices					
Instrument Transformers (CT's and PT's)					
Control room/ Control house					
Substation Reactor					
Support Structures					

Potential impact is the potential for negative outcomes in the event of climate hazard exposure.

Check-in: Sensitivity, Consequence, & Potential Impacts

Which concerns are most important to you?

🚧 NYSEG \, 🊧 RG&E

Welcome & Introductions

Project Update

Climate Data & Asset Exposure Analysis

Sensitivity, Consequence & Potential Impact

Priority Vulnerabilities

Discussion

Next Steps

Vulnerabilities

The potential of assets, operations or customers to be affected by projected hazards, and the significance of the potential consequences.

Each asset was given a sensitivity rating for each hazard, from O (N/A) to 3 (high), and a consequence rating.

Sensitivity and consequence ratings were considered in tandem to generate a **potential impact** score from low (green) to high (red).

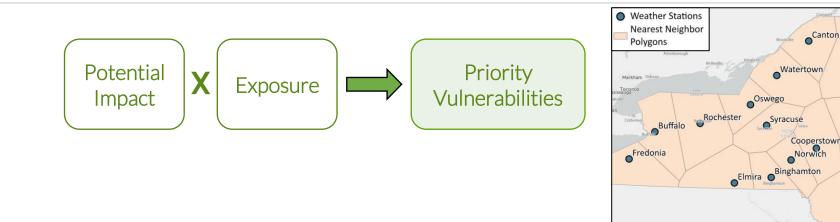
These ratings were determined through Avangrid and ICF experts' knowledge.

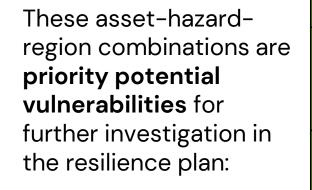
Potential impact scores were assessed alongside exposure data to create a list of priority vulnerabilities.

Dannemora

Lake Placid

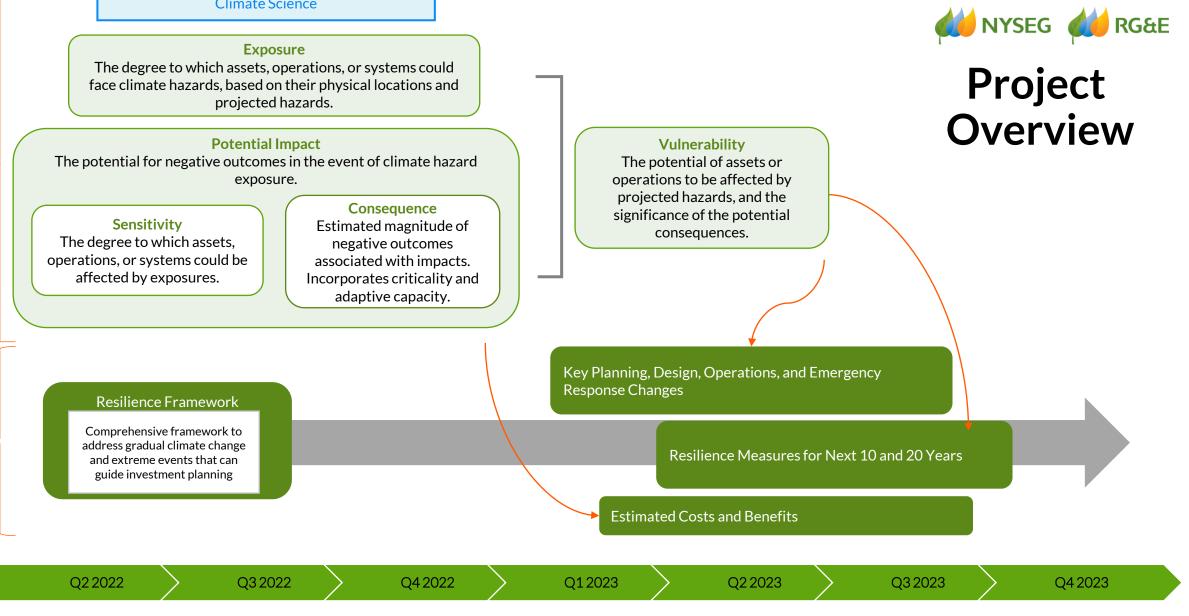
Saratoga


Springs
 Albany

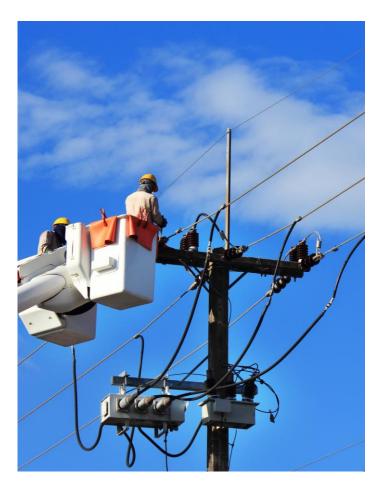

Mohon

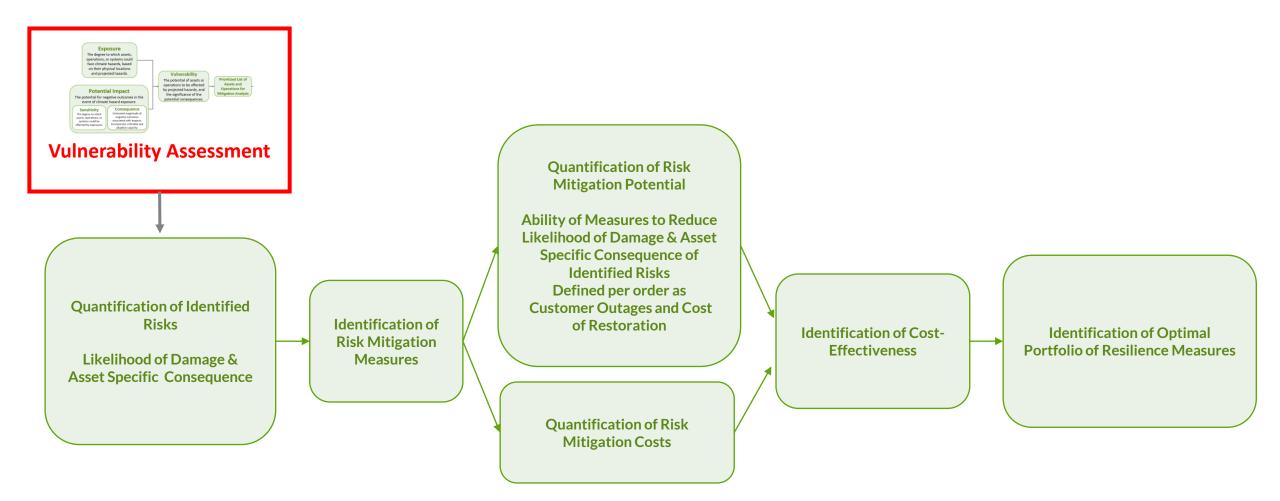
Dobbs Ferry

Preliminary Priority Vulnerabilities


Vulnerability is the potential of assets to be affected by projected hazards, and significance of potential consequences.

	Temperature	Wind	Inland & Riverine Flooding	Precipitation	Wind + Ice
Asset Families with highest impact ratings	Substations	Transmission Distribution Substations	Transmission Substations	N/A	Transmission Distribution Substations
Climate regions of highest hazard exposure	Brewster, Elmira	N/A	Floodplains span service area; evaluated on asset- by-asset basis	Brewster, Saratoga	N/A




Check-in: Priority Vulnerabilities

Any questions about priority vulnerabilities findings?

Vulnerability Assessment → Risk Assessment and Resilience Plan

🚧 NYSEG \, 🊧 RG&E

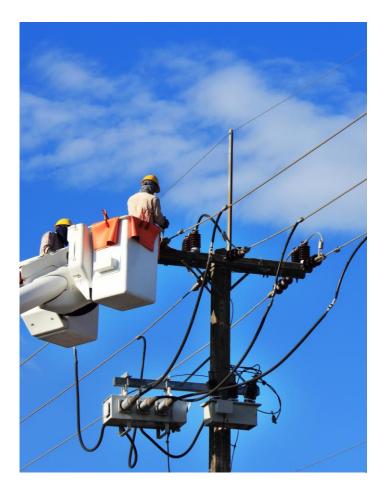
Welcome & Introductions

Project Update

Climate Data & Asset Exposure Analysis

Sensitivity, Consequence & Potential Impact

Priority Vulnerabilities Discussion


Next Steps

Discussion

Additional questions about methods or findings?

Anything you'd like to learn more about in the next update?

Welcome & Introductions

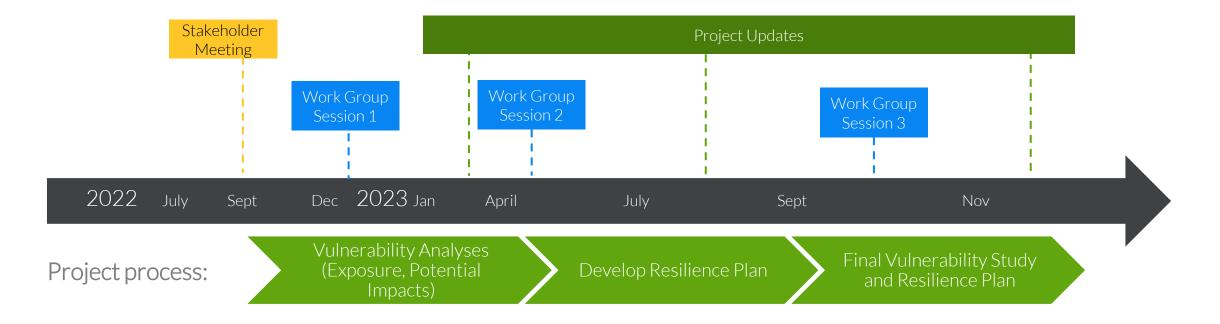
Project Update

Climate Data & Asset Exposure Analysis

Sensitivity, Consequence & Potential Impact

Priority Vulnerabilities

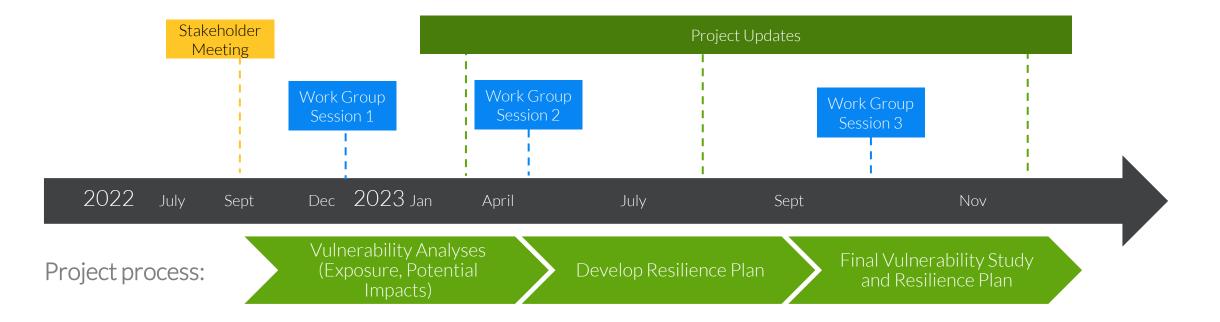
Discussion
Next Steps

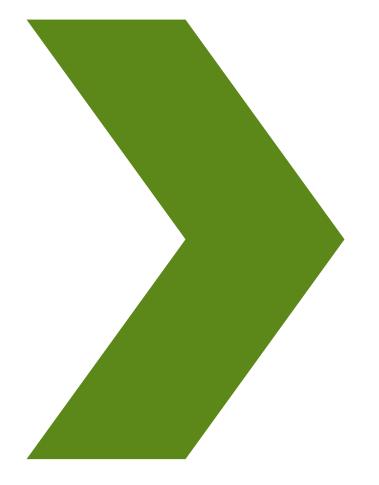


Continued Stakeholder Engagement Opportunities

- Updates will continue to be provided via periodic Project Update emails in 2023.
- Next Working Group meeting will be in early Fall of 2023 to further discuss the risk assessment and provide an update on the Resilience Plan
- Continue building towards the climate vulnerability study filing (Sept 2023) and resilience plan filing (Nov 2023)
- Parties are welcome to join the Working Group at any time

Stakeholder Engagement Timeline




Stakeholder Engagement Timeline

Key takeaway from today?

Thank You!

Please send any follow up questions or comments to: nyseg.rge.publicaffairs@avangrid.com